КулЛиб - Классная библиотека! Скачать книги бесплатно 

Теория реальности [Павел Сергеевич Данильченко] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

Павел Данильченко Теория реальности

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

ГЛАВА 1


Итак, начнем.

Что такое теория относительности? В чем же состоит ее суть?

Пожалуй, я начну с того, что теория относительности была представлена Альбертом Эйнштейном в начале 20-го века.

Теория относительности практически, можно сказать, ликвидировала несостыковки и противоречия физики 20-го века, заставила в корне поменять представление о структуре пространства-времени и экспериментально подтвердилась в многочисленных опытах и исследованиях. Таким образом, теория относительности легла в основу всех современных фундаментальных физических теорий. По – сути это мама современной физики! ))

Для начала следует отметить, что существует две теории относительности:

Специальная теория относительности (СТО) – рассматривает физические процессы в равномерно движущихся объектов.

Общая теория относительности (ОТО) – описывает ускоряющиеся объекты и объясняет происхождение такого явления как гравитация и существование частиц гравитонов.

СТО – иначе говоря простыми словами. В теории лежит принцип относительности, согласно которому любые законы природы одинаковы относительно неподвижных и движущихся с постоянной скоростью тел. И из такой казалось бы простой мысли следует, сто скорость света ( 300 000 м/с в вакууме ) одинакова для всех тел.

Например, представьте, что вам подарили космический корабль из далёкого будущего, который может летать с огромной скоростью. На носу корабля устанавливается лазерная пушка, способная стрелять вперед фотонами.

Относительно корабля такие частицы летят со скоростью света, однако относительно неподвижного наблюдателя они, казались бы, должны лететь быстрее, т.к. обе скорости суммируются.

Однако на самом деле этого не происходит!

Сторонний наблюдатель видит фотоны, летящие 300 000 м/с, как будто скорость космического корабля к ним не добавлялась.

Нужно запомнить: относительно любого тела скорость света будет неизменной величиной, как бы быстро оно не двигалось.


Из этого следуют потрясающие воображение выводы вроде замедления времени, продольном сокращении и зависимости массы тела от скорости. Подробнее об интереснейших следствиях Специальной теории относительности.


Суть общей теории относительности (ОТО)

Чтобы лучше ее понять, нам нужно вновь объединить два факта:

Пространства и время – это проявления одной и той же сущности под названием «пространственно-временной континуум». Это и есть 4-мерное пространство-время с осями координат x, y, z и t.

Мы, люди, не в состоянии воспринимать 4 измерения одинаково. По сути, мы видим только проекции настоящего четырехмерного объекта на пространстве и время.

Когда Эйнштейн упомянул о своем желании решить проблему гравитации, ему было сказано вещи: первое, – что это просто невозможно сделать, а второе заключается в том, что никто не поверит ему, даже если бы ему удалось сделать это. В ответ он создал свое величайшее творение – Общую теорию относительности.


Общая теория относительности сделала для гравитации то, что даже Ньютон не смог сделать, – дала ей объяснение, показала закономерность, благодаря которой вещи падают, вращаются на орбите и искажают время. Фактически, создание общей теории относительности связано с противостоянием с Ньютоном и его представлениями о гравитации, которая им описывалась как таинственна сила, сближающая объекты. Хотя по правде говоря, даже сам Ньютон не понимал, как это работает, поскольку сила притяжении действует через пустое пространство, и горько критиковал свою собственную теорию гравитации.


Тем не менее, несмотря на вопросы, которые остались без ответа, формулы Ньютона для гравитации все еще использовались в течении десятилетий, как основа универсальных законов физики, чтобы точно предсказывать движение планет и даже отправить людей на Луну. Чтобы понять общую теорию относительности, нам нужно кратко взглянуть на ньютоновскую теорию тяготения и на то, где она не дотягивает.

Ньютоновская гравитация была сформулирована главным образом для объяснения двух вещей. Первым был вопрос о том, почему объекты разного веса, при отсутствии сопротивления воздуха, падают на землю одновременно. Обратите внимание на слово «падают» а не «брошены». Бросание объектов добавляет дополнительную энергию, которую объект не имел бы, если бы он был просто уронен. Например, если бы не сопротивление воздуха, перо и свинцовый шар при падении приземлились бы одновременно. Два камня разных размеров и веса также будут приземляться на землю одновременно.

Другой вопрос, который Ньютон попытался решить, проблема ньютоновской гравитации заключается в ее действии на расстоянии. Силы зависят от массы объектов и от расстоянии между ними. Проблема с этим в том, что сила не имеет носителя, она действует в пустом пространстве. Также проблема в том, что она нарушает «ограничение скорости» Вселенной: ничто не может двигаться быстрее скорости света. Если объект изменил свое положение во Вселенной, силы притяжении, с которой он действует на другие объекты, мгновенно изменились бы, нарушив это ограничение скорости.

В попытке решить проблему гравитации Эйнштейн впервые придумал Специальную теорию относительности, которая учитывала только объекты, движущиеся по прямой и с постоянной скоростью. Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.

В начале 1900-х Эйнштейн провел мысленный эксперимент. Он смотрел в окно и представлял себе человека, падающего с крыши. Когда человек падал, он чувствовал себя невесомым. Но что если бы этот человек был в падающем лифте? Лифт будет двигаться с той же скоростью, что и человек, который также почувствует себя невесомым.

Именно тогда Эйнштейн понял, что происходит. Вопреки теории Ньютона, не было никакой гравитационной силы, тянущей объекты вниз. Вместо этого пространство вокруг них было изогнуто, подталкивая оба объекта к земле. Оно толкало, а не притягивало, как это считалось в теории притяжения Ньютона. Последствия этого открытия были удивительными. Это означало, что пространство является гибким, его можно складывать и изгибать. Эйнштейн объединил пространство и время в так называемый пространственно-временной континуум.

В то время как естественное движение вещей состоит в том, чтобы следовать простейшему пути через пространство-время, масса изгибает окружающее её пространство так, что мы движемся к центрам большей массы. Это и есть сила, которую мы называем гравитацией.

Как это описывает орбиты планет и их лун? Ньютоновская гравитация говорит, что Солнце притягивает нас к себе, но мы не падаем на него, потому что Земля также одновременно движется в сторону по эллиптической орбите. Но согласно общей теории относительности, огромная масса Солнца искажает пространство вокруг себя, и это изогнутое пространство толкает Землю к Солнцу.

Ни одно из этих изображений не является точным относительно того, как на самом деле выглядит кривизна пространства-времени – три измерения пространства, обернутые вокруг четвертого измерения (времени), – но наши умы не способны представить, как это будет выглядеть на самом деле. Поскольку мы живем в трех измерениях, мы можем представить себе только трехмерные ситуации.

Откуда мы знаем, что Общая теория относительности работоспособна? Доказательства этого есть во всей Вселенной. Теория не только объясняет нейтронные звезды и аномалии орбиты Меркурия, но и правильно предсказывает черные дыры и способность гравитации сгибать свет. Звездный свет, например, искривляется, когда проходит вблизи Солнца. Еще один интересный момент со светом заключается в том, что когда он отклоняется вокруг более компактных объектов, это приводит к нескольким изображениям этого объекта. Это обычно наблюдаемое явление называется гравитационным линзированием и помогает подтвердить общую относительность.

Знаете ли вы, что время также может быть искажено? Время замедляется ближе к объектам очень большой массы. Например, для тех, кто живет в высоком небоскребе, время течет быстрее, чем для находящихся на земле. Но, эта разница очень мала, разумеется.

Теория относительности также предсказывает, что в момент зарождения нашей Вселенной она была очень горячей и плотной, что в конечном итоге привело к Большому взрыву. С тех пор мы обнаружили, что наша Вселенная расширяется гораздо быстрее, чем предсказывал Эйнштейн.

Как выразился физик-теоретик Джон Уилер (John Wheeler), «пространство-время говорит материи, как двигаться, а материя говорит пространству-времени, как изгибаться».

Что касается опыта с двумя падающими объектами разной массы, теория относительности говорит, что они упали на пол одновременно, потому что на них не действует сила.

Применений общей теории относительности гораздо больше. Это был один из величайших даров Эйнштейна миру, и он продолжает проходить тестирование. Но это действительно рисует довольно странную картину Вселенной – ту, где червоточины могут существовать, и параллельные линии могут в конечном итоге расходиться. Мы до сих пор всё еще обсуждаем эту теорию. Мы продолжаем использовать слово «гравитация», и мы продолжаем думать с точки зрения ньютоновской гравитации, потому что это более понятно для нашего ума, чем изогнутое пространство-время.

Активное изучение законов электромагнетизма началось в XIX веке, хотя и до этого ученые интересовались такими загадочными явлениями, как электричество и магнетизм. Еще в 1790-е годы естествоиспытатель из Франции Шарль Огюстен Кулон открыл закон электростатической силы и изложил его в виде формулы. Современная формулировка закона Кулона выглядит так: сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.


Приблизительно в это же время итальянец Алессандро Вольта изобрел химическую батарею. Она представляла собой банку с кислотой, в которую были опущены две пластинки, одна из меди, вторая из цинка. Ученый соединил их проволокой, после чего пластина из цинка начала растворяться, а на медной появились газовые пузырьки. Вольта доказал, что по проволоке протекает электрический ток. Позже он усовершенствовал свое изобретение, придав ему форму цилиндра. Эта химическая батарея получила название вольтова столба.


В 1820 году датский физик Ганс Христиан Эрстед сделал очередное впечатляющее открытие, связанное с электричеством: он обнаружил, что ток, пропускаемый через провод, воздействует на стрелку компаса, заставляя ее отклоняться. До этого считалось, что на компас могут воздействовать только магниты. Дальше за дело взялся другой естествоиспытатель,


КВАНТОВАЯ МЕХАНИКА

ГЛАВА 2


Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк (см. Постоянная Планка) для описания взаимодействия света с атомами.

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны – но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие – без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

неопределенность пространственных координат × неопределенность скорости частицы > h/m,

или, говоря математическим языком:

Δx × Δv > h/m

где Δи Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка, а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц – таких как скорость. Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары – энергия, излучаемая электроном, и отрезок времени, за который она испускается). То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот. Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10–6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства. Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения. Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см. Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет. Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.


Квантовая механика родилась как необходимость, чтобы объяснить результаты некоторых опытов, которые не могла объяснить классическая теория.

Первое. Возникли трудности с опытом Юнга. Не понятно было, как одна и та же частица может пролезать через две разные щели одновременно. Родился корпускулярно-волновой дуализм, который никому невозможно представить. Все должны просто в это верить и запомнить это. Других опытов, подтверждающих этот дуализм, пока не наблюдается. Опыт Юнга и ошибки в его истолковании можно найти по ссылке.

Второй казус возник с планетарной моделью атома Резерфорда. Когда он представил свою модель, то мудрецы сразу же выдвинули теорию: электрон, вращается с большой скоростью вокруг ядра в результате чего должен излучать энергию и в конце концов упасть на ядро. А этот электрон никуда не падал и никуда не улетал. Но то ли эти мудрецы забыли или и не знали об опытах Кауфмана и наличие у ядра магнитного поля (может быть тогда об этом никто не знал) так как не учли все это в своих рассуждениях.

Пришлось Бору постулировать: у атома есть такие уровни (орбиты), где электрон летает и ничего не излучает. Все остолбенели и перестали искать силы, которые не позволяют электрону упасть на ядро, а про силы, удерживающие электрон в составе атома, даже и не думали, да и сейчас ученые и не подозревают, что такие силы существуют в виде обменного фотона.


Если вы думаете, что некоторые вещи из мира науки вас не касаются, вы глубоко ошибаетесь. Даже то, что кажется очень далеким в некотором роде влияет на вашу жизнь. Это относится и к квантовой механике. Она тоже часть нашего мира.

14 декабря 1900 года в мире физике родилась принципиально новая теория, впоследствии выросшая в невероятную для простого обывателя и не менее странную для физиков квантовую механику.


В начале 20 века поняли, что в атоме есть ядро и электрон. И попытались определить свойство электрона, в том числе и его поведение в различных условиях.

Оказалось, что электрон очень хитрая штука, и чтобы описать его поведение (вообще, механика изучает движение тел, но назвать поведение электрона «движением», как-то не могу, все таки это нечто другое, а не движение в общепринятом смысле) нужна особая наука, ее и назвали квантовая механика. С тех пор, более менее изучили взаимодействие с остальным миром только электронов, причем лучше всего в атоме водорода, где он один.

Сейчас, конечно, квантовая механика пытается описывать поведение всех частиц внутри атома, но по сравнению с электроном, с которым еще далеко не все понятно, со всем остальным, вообще беда! Так что, можно пока еще понимать квантовую механику, как науку о «движении» электронов внутри атома.


А что даст полное понимание квантовой механики…да кто ж это скажет, пока еще не поняли?! Кто бы мог сказать в 19 веке, к чему приведет частичное понимание строения атома? А в 20 веке, еще ничего до конца не поняв, смогли делать атомные реакторы и ядерные и термоядерные бомбы.

Понятно, что квантовая механика рано или поздно приведет к новым источникам энергии, все-таки распад Урана и Плутония, и даже синтез водорода освобождает только малую часть энергии скрытую в атоме.


Наш мир устроен невероятно сложно. Если посмотреть в телескоп, то перед нами откроется целая Вселенная, бесконечная и расширяющаяся все быстрее и быстрее. От одной мысли о том, что в одной лишь наблюдаемой Вселенной существует около 10 триллионов галактик, может закружится голова. Это невероятно!

Как и многочисленные предположения о существовании Мультивселенной и параллельных реальностей. К слову сказать, современная физика изобилует подобными идеями, но мы с вами остановимся на одной из, по моему скромному мнению, самых интересных из них – многомировой интерпретации квантовой механике или интерпретации Эверетта. В 1954 году, будучи аспирантом Принстонского университета, физик Хью Эверетт пришел к революционной интерпретации нерелятивистской квантовой механике, которую полностью развил за два последующий года.

Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.


ПРОСТРАНСТВО-ВРЕМЯ

ГЛАВА 3


С точки зрения физики, исследуя ничтожно малое пространство, мы увидим, что оно состоит из квантов. Но что это за кирпичики?

Люди, как правило, воспринимают пространство как нечто само собой разумеющееся. Ну, в самом деле: это просто-напросто пустота, фон для всего остального. Время тоже простая штука: беспрестанно тикает и тикает. Однако, если физики, долгие годы бившиеся над объединением их фундаментальных теорий, и сумели извлечь из этого хоть что-то полезное, так это то, что пространство и время образуют систему такой ошеломляющей сложности, что любые, даже самые отчаянные попытки осмыслить её могут оказаться тщетными.

Альберт Эйнштейн увидел этот назревавший результат уже в ноябре 1916 года. Годом ранее он сформулировал общую теорию относительности, согласно которой гравитация является не силой, действующей в пространстве, а свойством самого пространства-времени. Шар, брошенный высоко вверх, по дуге возвращается к земле, потому что Земля так искажает окружающее его пространство-время, что пути шара и земли снова пересекаются. В письме к другу Эйнштейн размышлял о проблеме объединения общей теории относительности и его другого детища – зарождавшейся квантовой механики. Получалось, что, если объединение состоится, разговорами о том, что пространство искажается, ограничиться не удастся: придётся вести речь о его демонтаже. Обдумывая математические расчёты, он плохо понимал, с чего следует начать. «Как же я измучил себя на этом пути!» – написал он.

Продвинуться далеко Эйнштейну не удалось. Даже сейчас конкурирующих версий квантовой теории гравитации почти столько же, сколько учёных, работающих над данной темой. В горячих спорах упускают из виду важную истину: все конкурирующие версии говорят о том, что пространство происходит от чего-то более глубокого. Эта идея идёт вразрез с 2500-летним опытом научного и философского осмысления пространства.

Вглубь чёрной дыры

Проблему, стоящую перед физиками, прекрасно иллюстрирует обычный магнит. Он легко поднимает с пола скрепку, несмотря на гравитацию целой планеты Земля. Гравитация слабее магнетизма, электрических и ядерных связей. Какими бы ни были квантовые эффекты, они чрезвычайно слабы. Единственное осязаемое свидетельство того, что они всё же существуют, – это пёстрый узор ранней Вселенной, который, как полагают, не мог появиться без участия квантовых флуктуаций гравитационного поля.

Лучше всего исследовать квантовую гравитацию с помощью чёрных дыр. «Они самые подходящие объекты для проведения экспериментов», – говорит Тед Джекобсон (Ted Jacobson) из Мэрилендского университета в Колледж-Парке (University of Maryland, College Park). Он и другие теоретики изучают чёрные дыры как теоретические точки опоры. Что произойдёт, если взять уравнения, которые отлично работают в ходе лабораторных исследований, и применить их для чёрной дыры – самого экстремального объекта? Проявится ли какой-нибудь тонкий изъян?

Согласно общей теории относительности, стоит какому-то материальному предмету попасть в центр чёрной дыры – и он окажется бесконечно сжатым. Это математический тупик, называемый сингулярностью. Теоретики не могут экстраполировать траекторию попавшего в чёрную дыру предмета за пределы сингулярности; там пресекается не только траектория, но и линия времени. Даже говорить про «там» проблематично, ибо само пространство-время, определяющее местоположение сингулярности, перестаёт существовать. Исследователи надеются, что квантовой теории удастся выступить в роли микроскопа, дающего возможность разглядеть, что происходит с материальным предметом, попадающим в сингулярность.

На подступах к чёрной дыре материя не настолько сжата и гравитация не настолько сильна, чтобы не работали известные нам законы физики. Однако они, как это ни странно, не работают. Границей чёрной дыры является горизонт событий, рубеж невозврата: материя, которая сюда попадает, вернуться не может. Спуск в дыру необратим, и это – физическая проблема, ибо все известные ныне законы фундаментальной физики, в том числе квантовой механики в её обычной интерпретации, обратимы. У вас должна быть, по крайней мере, принципиальная возможность обратить вспять движение всех частиц и восстановить то, что у вас было.

Очень похожая проблема встала перед физиками в конце 1800-х годов, когда они исследовали математику «чёрного тела», идеализированная модель которого представляет собой полость, заполненную электромагнитным излучением. Согласно теории электромагнетизма Джеймса Клерка Максвелла, такой объект должен поглощать всё падающее на него излучение и никогда не сможет прийти к равновесию с окружающей средой. «Он поглощает бесконечное количество тепла из резервуара, температура которого остаётся постоянной», – объясняет Рафаэль Соркин (Rafael Sorkin) из Института теоретической физики «Периметр» (Perimeter Institute for Theoretical Physics) в Онтарио. Говоря на языке термодинамики, температура этого объекта фактически равна абсолютному нулю. Данный вывод противоречит результатам наблюдения за реальными чёрными телами (такими как печь). Опираясь на исследования Макса Планка, Эйнштейн показал, что чёрное тело может достичь теплового равновесия, если излучаемую энергию получают дискретные единицы, или кванты.

Над проблемой равновесия чёрных дыр физики-теоретики бьются уже почти полвека. В середине 1970-х годов недавно почивший Стивен Хокинг (Stephen Hawking) из Кембриджского университета (University of Cambridge) сделал огромный шаг вперёд: изучая с помощью квантовой теории поле излучения вокруг чёрных дыр, он показал, что температура этих объектов не является нулевой. В таком случае, они не только поглощают, но и излучают энергию. Хотя благодаря Хокингу чёрные дыры прописались в термодинамике, проблема необратимости усугубилась. Излучение чёрной дыры не несёт никакой информации о том, что у неё внутри. Это случайная тепловая энергия. Если, запустив данный процесс в обратном порядке, вы вернёте дыре её энергию, то поглощённая ею материя не выскочит назад; вы просто получите больше тепла. И нет оснований считать, будто попавшие в дыру материальные предметы всего лишь заперты в ней, но продолжают существовать, ибо, излучая, дыра сжимается и, согласно расчётам Хокинга, в конце концов неминуемо исчезает.

Эту проблему называют информационным парадоксом, так как чёрная дыра съедает ту информацию о поглощённых ею частицах, с помощью которой вы могли бы обратить их движение вспять. Если физика чёрных дыр действительно допускает обратимость любого процесса, то что-то должно нести информацию из этих дыр, и, чтобы так оно и было, возможно, нашу концепцию пространства-времени следует изменить.

Атомы пространства-времени

Тепло – это хаотическое движение микроскопических частиц, таких как молекулы газа. Поскольку чёрные дыры могут нагреваться и остывать, разумно предполагать, что они включают в себя частицы – в общем, имеют микроскопическую структуру. А поскольку чёрная дыра – это всего-навсего пустое пространство (согласно общей теории относительности, поглощаемая материя проходит через горизонт событий, но не может не исчезнуть), её частицы должны быть частицами самого пространства. Чёрная дыра, простая настолько, насколько может быть простым простор пустого пространства, скрывает в себе беспредельную сложность.

Даже теории, провозглашающие свою приверженность обычному пониманию пространства-времени, в конечном итоге приходят к выводу, что за этим безликим фасадом что-то скрывается. Например, в конце 1970-х годов Стивен Вайнберг (Steven Weinberg), ныне работающий в Техасском университете в Остине (University of Texas at Austin), стремился дать описание гравитации, похожее на описание других сил природы. Однако и он вынужден был отметить, что пространство-время, если брать его в том масштабе, в каком оно проявляет себя максимально ярко, выглядит весьма и весьма необычно.

Первоначально физики изображали микроскопическое пространство в виде мозаики, сложенной из маленьких кусков. Считалось, что взглянув на него в масштабе Планка, то есть имея дело с умопомрачительно малой единицей длины, составляющей 10−35 метров, мы увидим нечто вроде шахматной доски. Однако, на самом деле, картина пространства будет несколько иной. И, прежде всего, следует отметить, что в сетке этой шахматной доски разные направления неравноценны, в результате чего имеют место асимметрии, противоречащие специальной теории относительности. Например, скорость света может зависеть от его цвета – точь-в-точь как в стеклянной призме, расщепляющей свет на цвета радуги. И эти нарушения относительности будут бросаться в глаза, хотя обычно, имея дело с малыми масштабами, трудно наблюдать какие-либо эффекты.

Кроме того, термодинамика чёрных дыр заставляет усомниться в том, что пространство представляет собой простую мозаику. Измеряя тепловое поведение любой системы, вы можете более или менее точно рассчитать число входящих в неё частей. Вбросьте в систему энергию и посмотрите на термометр. Если температура взлетела, вброшенную энергию получило сравнительно небольшое количество молекул. В сущности, то, что вы измеряете, – это энтропия. Она характеризует микроскопическую сложность системы.

Если вы имеете дело с обычной материей, с увеличением изучаемого объёма растёт число молекул. Тут всё закономерно: увеличьте радиус пляжного мяча в 10 раз – и внутри него окажется в 1000 раз больше молекул. Однако, увеличив в 10 раз радиус чёрной дыры, вы получите всего лишь стократное увеличение числа её «молекул». Количество частиц, из которых состоит дыра, пропорционально площади её поверхности, а не её объёму. Чёрная дыра выглядит трёхмерной, а ведёт себя, как двухмерная.

Этот странный эффект называют голографическим принципом, потому что он ассоциируется с голограммой. Глядя на голограмму, мы видим трёхмерный объект, хотя, на самом деле, перед нами двухмерный лист плёнки. Если голографический принцип учитывает микроскопические частицы пространства и его содержание, – а с этим согласны многие физики-теоретики, – то для создания пространства мало простого объединения маленьких кусочков.

Во всяком случае, отношение части к целому редко бывает простым. Молекула H2O – это не просто частица воды. Вспомним известные нам свойства данной жидкости: она течёт, образует капли, рябь и волны, замерзает и кипит. Отдельная молекула H2O ничего такого не делает: молекул должно быть много. Аналогично, кирпичики пространства могут не быть пространственными. «Атомы пространства не являются мельчайшими частицами пространства, – говорит Даниэле Орити (Daniele Oriti) из Института гравитационной физики Общества Макса Планка (нем. Max-Planck-Institut für Gravitationsphysik) в Потсдаме, Германия. – Они лишь то, из чего образуется пространство. Геометрические свойства пространства – новые, коллективные, более или менее точные свойства системы, состоящей из многих таких атомов».

Что именно представляют собой эти кирпичики, зависит от теории. В теории петлевой квантовой гравитации это – кванты объёма, взаимодействующие на основе квантовых принципов. В теории струн это – родственные электромагнитным поля, живущие в плоскости, образуемой движущейся струной – нитью или петлёй энергии. В М-теории, которую можно рассматривать как фундамент теории струн, это – особый тип частиц: мембрана, сжатая в точку. В теории причинностного множества (causal sets theory) это – события, связанные сетью причины и следствия. В теории амплитуэдра и некоторых других теоретических схемах никаких кирпичиков, образующих пространство, нет вообще – по крайней мере, в том смысле, в каком их обычно понимают.

Во всех этих теориях, несмотря на разные принципы их построения, используется так называемый «реляционизм» немецкого философа XVII—XVIII веков Готфрида Лейбница. С точки зрения реляционизма, пространство возникает из определённой структуры корреляций между объектами. Выходит, оно – своеобразный пазл. Вы начинаете с большой кучи кусочков, смотрите, какие между ними связи, и соответственно складываете из этих кусочков какую-то картину. Если два кусочка имеют что-то схожее, например цвет, их, по-видимому, следует разместить рядом; если же они сильно отличаются друг от друга, вы постараетесь разместить их так, чтобы между ними было большое расстояние. Выражаясь языком физики, это – сеть с определённой структурой связности. Отношения здесь задаются законами квантовой теории или другими принципами, и на этой основе образуется пространство.

Ещё одна общая для разных теорий тема – фазовые переходы. Пространство, которое складывается из кирпичиков, можно и разобрать. Затем из его кирпичиков можно создать нечто, совсем непохожее на пространство. «Подобно тому, как вещество имеет разные фазовые состояния, такие как лёд, вода и водяной пар, у атомов пространства, благодаря их способности перенастраиваться, тоже есть разные фазы», – утверждает Тхану Падманабхан (Thanu Padmanabhan) из Межуниверситетского центра астрономии и астрофизики (Inter-University Center for Astronomy and Astrophysics) в Индии. С этой точки зрения, чёрные дыры могут быть местами исчезновения пространства в ходе фазового перехода. Привычные теории рушатся, и нужна более фундаментальная теория для описания нового фазового состояния атомов пространства. Физика продолжает работать даже там, где исчезает пространство.

Запутанные сети

Большой интеллектуальный прогресс последних лет, разрушивший старые границы физических теорий, состоит в осознании того, что изучаемые физикой отношения могут быть связаны с квантовой запутанностью. Будучи сверхмощным типом корреляции, который исследуется в рамках квантовой механики, запутанность, по-видимому, первичнее пространства. К примеру, экспериментатор может сделать так, чтобы две частицы полетели в противоположных направлениях. Если эти частицы запутаны, то, каким бы огромным ни было разделяющее их пространство, между ними сохранится координация.

Обычно в разговорах о «квантовой» гравитации обсуждали квантовую дискретность, квантовые флуктуации, кучу других квантовых эффектов, но только не квантовую запутанность. Ситуация изменилась, когда в эти разговоры вмешались чёрные дыры. Пока существует чёрная дыра, в неё попадают запутанные частицы. Их партнёры, не поглощённые дырой, с её исчезновением остаются запутанными… ни с чем. «Хокинг назвал бы это проблемой запутанности», – говорит Самир Матур (Samir Mathur) из Университета штата Огайо (The Ohio State University).

Даже в вакууме, при отсутствии частиц, электромагнитные и другие поля демонстрируют внутреннюю запутанность. Измеряя поле в двух разных местах, вы увидите, что показания вашего прибора колеблются случайным, но скоординированным образом. И если вы разделите какую-то область на две части, эти части будут коррелировать друг с другом со степенью корреляции, зависящей от единственной общей для них геометрической величины – площади их контакта. В 1995 году Джекобсон заявил, что запутанность обеспечивает связь между наличием вещества и геометрией пространства-времени, а значит, может объяснить закон гравитации. «Чем больше запутанности, тем слабее гравитация, то есть жёстче пространство-время», – утверждает он.

В настоящее время целый ряд концепций квантовой гравитации – и, прежде всего, теория струн – отводит запутанности решающую роль. Теория струн применяет голографический принцип не только к чёрным дырам, но и ко всей Вселенной. При этом получился рецепт создания пространства – по крайней мере, некоторых его видов. Например, структурированные особым образом поля, пронизывая двухмерное пространство, генерируют дополнительное измерение. С появлением третьего измерения исходное двухмерное пространство превращается в границу более роскошного царства, известного как объёмное пространство. И то, что объединяет объёмное пространство в сопредельное целое, это – запутанность.

Для обоснования данной гипотезы Марк ван Раамсдонк (Mark Van Raamsdonk) из Университета Британской Колумбии (University of British Columbia) в 2009 году провёл элегантное доказательство. Предположим, что поля на границе не запутаны. Образуя пару некоррелирующих систем, они соответствуют двум автономным вселенным. Путешествовать из одной в другую невозможно. Когда системы запутываются, между автономными вселенными возникает нечто похожее на туннель или лаз, благодаря чему космический корабль получает возможность пролететь из одной вселенной в другую. С усилением запутанности туннель всё короче и короче, вселенные всё ближе и ближе друг к другу, и, наконец, их сближение достигает такой фазы, на которой говорить о них как о двух вселенных уже бессмысленно. «Появление большого пространства-времени напрямую связано с запутыванием степеней свободы, имеющихся у полей», – считает ван Раамсдонк. Наблюдаемые нами корреляции в электромагнитных и других полях являются остатком запутанности, обеспечивающей единство пространства.

По-видимому, запутанность определяет не только сопредельность пространства, но и многие другие его свойства. Ван Раамсдонк и Брайан Свингл (Brian Swingle), ныне работающий в Мэрилендском университете в Колледж-Парке, объясняют универсальный характер гравитации – то, что она затрагивает все объекты и не поддаётся экранированию, – вездесущностью запутанности. Что касается чёрных дыр, то Леонард Сасскинд (Leonard Susskind) из Стэнфордского университета (Stanford University) и Хуан Мальдацена (Juan Maldacena) из Института перспективных исследований (Institute for Advanced Study) в Принстоне, штат Нью-Джерси, считают, что запутанность между чёрной дырой и её излучением создаёт лаз – чёрный вход в дыру. Возможно, это поможет физике чёрных дыр решить проблему сохранения информации и обратимости.

Данные идеи теории струн работают только в рамках конкретных геометрий и реконструируют только одно измерение пространства. Некоторые исследователи попытались объяснить, как всё пространство может возникнуть с чистого листа. К примеру, Чуньцзюнь Цао (ChunJun Cao), Спиридон Михалакис (Spyridon Michalakis) и Шон М. Кэрролл, все из Калифорнийского технологического института (California Institute of Technology), начинают с минималистского квантового описания системы, введённой без прямой ссылки на пространство-время и даже на материю. Если система имеет правильную структуру корреляций, её можно расщепить на составные части, которые могут быть идентифицированы как разные области пространства-времени. В этой модели степень запутанности определяет понятие пространственного расстояния.

Не только в физике, но и в других естественных науках пространство и время – основа всех теорий. Однако мы не можем наблюдать пространство-время непосредственно. Мы выводим его существование из нашего повседневного опыта. Мы предполагаем, что некий механизм, действующий в пространстве-времени, – это наиболее экономичное объяснение наблюдаемых нами явлений. Но главный урок, который следует извлечь из теории квантовой гравитации, состоит в следующем: не все явления аккуратно вписываются в пространство-время. Физикам нужно найти какой-то новый фундамент, и, найдя его, они смогут завершить

революцию, начатую чуть более века назад Альбертом Эйнштейном.


РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ

ГЛАВА 4


Я думаю многие слышали о том, что Вселенная расширяется. У моих читателей возникает множество вопросов связанных с этим. В этой книге я постарался ответить на наиболее типичные из них.

Как работает расширение вселенной?

Когда мы смотрим на отдаленные объекты, мы можем заметить, что они отдаляются от нас, при этом чем дальше от нас находится объект, тем быстрее он отдаляется. К примеру объекты находящиеся от нас на расстоянии 13.8 миллиардов световых лет (сфера Хаббла) отдаляются от нас со скоростью света, а объекты находящиеся еще дальше – отдаляются быстрее скорости света!

Казалось бы происходит нарушение теории относительности, которая запрещает сверхсветовое движение, но на самом деле это не так. Так отдаленные галактики отдаляются от нас не за счет собственного движения, а за счет того, что между нами и ними пространство расширяется настолько быстро, что для расстояние увеличивается быстрее скорости света.

Почему отдаленные галактики удаляются быстрее?

Потому, что пространство расширяется везде и повсеместно равномерно во всех точках. К примеру если во вселенной каждый метр пространства увеличится на 1 сантиметр за 1 секунду, то тогда объекты расположенные на расстоянии 1 километр друг от друга отдалятся за 1 секунду друг от друга на 10 метров. А на расстоянии 100 километров – на 1000 метров. А на расстоянии 1000 километров – на 10 000 метров и так далее – чем больше расстояние между объектами, тем больше пространства между ними возникает за единицу времени.

Почему все галактики удаляется от нас? Значит ли это, что мы находимся в центре расширения? В центре вселенной? Нет, не значит. Так как пространство расширяется повсеместно и равномерно то какую бы галактику вы не выбрали, как точку обзора,из нее все будет выглядеть так, как будто это она находится в центре расширения, но по сути никакого центра расширения просто нет.

На расстоянии примерно 46.5 миллиардов световых лет находится граница наблюдаемой вселенной. Все что находится за ней мы никогда не сможем увидеть. Просто потому, что фотоны испущенные объектами находящимися за границей наблюдаемой вселенной никогда не достигнут нас – пространство между ними и нами будет возникать быстрее, чем фотоны будут успевать преодолевать его. Это расстояние еще называют горизонтом частиц.

Куда расширяется вселенная?

Теперь возникает следующий вопрос – куда же расширяется вселенная? Ответ на него донельзя прозаичен – никуда. Все дело в том, что вселенная бесконечна и не имеет границ. Более того вселенная всегда была бесконечна, даже в момент Большого Взрыва. Когда физик или астроном говорит, что в момент большого взрыва вселенная была сжата до микроскопического размера речь идет о размерах наблюдаемой вселенной, а не всей вселенной.

Расширение вселенной таким образом является внутренним процессом, а не внешним. Во вселенной увеличиваются расстояния между объектами, но сама вселенная, как была так и остается бесконечной. Вселенной не нужно никакое внешнее пространство в которое она бы расширялась.

Почему случаются столкновения галактик?

Если мы расширяемся, почему тогда наша галактика столкнется с галактикой Андромеда через 4 с небольшим миллиарда лет, да и другие галактики сталкиваются – тому есть подтверждения? Все просто – чем ближе друг к другу объекты – тем меньше пространства между ними возникает в ходе расширения.

Расстояние между некоторыми близкими галактиками достаточно мало, чтобы за счет сил гравитационного притяжения они приближались друг к другу быстрее, чем успевает расширяться пространство между ними.

Так что, так и будет расширяться бесконечно?

В целом да, но возможно три допустимых финала: большое схлопывание, большой разрыв и большое замерзание (тепловая смерть вселенной).

Если верна теория большого схлопывания, то в какой-то момент силы гравитации материи остановят расширение вселенной и начнется ее сжатие обратно в сингулярность. Затем последует новый большой взрыв и новое расширение – так вселенная и существует постоянно то расширяясь, то сжимаясь.

Второй сценарий – большой разрыв состоит в том, что ускоренное расширение вселенной приведет к тому, что расстояние между элементарными частицами увеличится настолько, что станут невозможными какие-либо виды взаимодействий между ними. Это может случится примерно через 22 миллиарда лет.

ЧЕРНЫЕ ДЫРЫ

ГЛАВА 5


Черная дыра – удивительное явление, встречающееся во Вселенной. Оно представляет большой интерес для ученых, однако в процессе его изучения они сталкиваются со многими трудностями. Тем не менее, современные технологии позволяют не только построить теории об устройстве черных дыр, но и проверить их на практике.

Что такое черная дыра?


Это может показаться странным, но черные дыры являются самыми простыми объектами во Вселенной в плане характеристик. У них есть лишь два параметра: скорость вращения и масса. В астрофизике считается, что они являются финальным этапом эволюции звезд. Когда жизненный цикл светила подходит к концу, оно взрывается, а его центр превращается в черную дыру. Поверхность новообразованного небесного тела называется горизонтом событий. Но нужно понимать, что у черной дыры отсутствует физическая оболочка. Под данным термином подразумевается лишь пространство на определенном расстоянии от центра, где заканчивается действие силы притяжения. Когда объект или свет пересекает горизонт событий, он уже не может выбраться из черной дыры, поскольку оказывается в сильном гравитационном поле


Интересный факт: чтобы покинуть черную дыру, объект должен двигаться навстречу времени, т.е. перемещаться в прошлое, что в принципе невозможно.

Почему черные дыры так называются?

Изначально данные космические объекты назывались коллапсарами. Однако в XX веке журналисты научных изданий начали использовать словосочетание “черная дыра”. Оно так сильно понравилось физику Джону Уиллеру, что он вывел его на уровень официального обозначения. Черные дыры получили такое название, поскольку полностью поглощают свет, из-за чего их нельзя увидеть. Разглядеть объект можно лишь в том случае, если вокруг горизонта событий находится оболочка из определенного вещества, например, газа. Также черная дыра хорошо заметна, если она впитывает вещество и энергию из расположенной рядом звезды. В противном случае обнаружить ее не удасться, поскольку она будет невидима для человеческого глаза и приборов.

Хоть данные объекты и поглощают свет полностью, никак его не отражая, есть гипотеза, что они могут обладать излучением. Во время своего существования черная дыра способна испускать в пространство разные простейшие частицы, большую часть которых составляют фотоны. С физической точки зрения этот процесс напоминает постепенное испарение. На данный момент это явление не доказано, и существует лишь гипотетическая модель. Ученые называют его излучением Хокинга. Видимыми черные дыры становятся, когда сталкиваются друг с другом. От них в пространство начинают исходить заметные гравитационные волны. Как появляются черные дыры?

Появление черных дыр напрямую зависит от их массы. По этому параметру они разделяются на две категории: околосолнечные – их вес равен нескольким Солнцам, и массивные – у них данный параметр в миллионы раз больше.

Интересный факт: размеры черной дыры пропорциональны ее массе. Чем она больше весит, тем шире горизонт событий.

Исследования показывают, что околосолнечные черные дыры имеют большой возраст и скорее всего появились на ранних этапах формирования Вселенной. Они образовались в результате сжатия звезд, размеры которых в 25-70 раз превышают габариты Солнца. Когда светило прекращало уменьшаться, оно взрывалось, а его центр превращался в черную дыру. Массивные объекты в большинстве случаев образуются из гигантских газовых облаков. Массы последних как раз хватает, чтобы сформировалась черная дыра больших размеров, которая весит в миллионы раз больше Солнца. На территории Млечного Пути существует одна из таких под названием Стрелец А*. Она находится в 26 тысячах световых лет от Солнечной системы. Эта черная дыра появилась примерно в то же время, что и галактика, и располагается в ее центре. Основным материалом для нее послужило газовое облако, которое сжалось до малых размеров. Также есть версия, что черная дыра в Млечном Пути появилась после взрыва звезды гигантских размеров.

На протяжении своего существования оба вида объектов притягивают из пространства вещества, которые пересекают их горизонт событий. Из-за этого габариты черной дыры постепенно увеличиваются. Более того, если поглощение происходит лишь с одной стороны, она начинает вращаться в определенную сторону.

Какой формы черная дыра?

Все черные дыры вращаются вокруг своей оси. И от скорости напрямую зависит их внешний вид. Если движение происходит медленно, то форма объекта будет сферической. Но когда черная дыра вращается с большой скоростью, ее полюса сплющиваются, из-за чего она становится овальной.

Все черные дыры вращаются вокруг своей оси. И от скорости напрямую зависит их внешний вид. Если движение происходит медленно, то форма объекта будет сферической. Но когда черная дыра вращается с большой скоростью, ее полюса сплющиваются, из-за чего она становится овальной.

На данный момент современных технологий хватает на то, чтобы определить форму объекта. Но ученым до сих пор не удается узнать, что находится в центре черной дыры. Известно, что там не действуют физические законы, а кривизна пространства стремится к бесконечности. Пока самым распространенным мнением считается, что внутри черной дыры находится сингулярность.


РОЖДЕНИЕ ВСЕЛЕННОЙ

ГЛАВА 6


Космология, строение Вселенной, прошлое, настоящее и будущее нашего мира – эти вопросы всегда занимали лучшие умы человечества. Для развития космологии, да и науки в целом, крайне важно понимание Вселенной как единого целого. Особую роль играют экспериментальная проверка абстрактных построений, подтверждение их наблюдательными данными, осмысление и сопоставление результатов исследований, адекватная оценка тех или иных теорий. Сейчас мы находимся на середине пути, который ведет от решения уравнений Эйнштейна к познанию тайны рождения и жизни Вселенной.

Очередной шаг на этом пути сделал создатель теории хаотической инфляции, воспитанник Московского государственного университета, ныне профессор Стэнфордского университета Андрей Дмитриевич Линде, внесший существенный вклад в понимание самой ранней стадии развития Вселенной. Многие годы он проработал в одном из ведущих академических российских институтов – Физическом институте им. Лебедева Академии наук (ФИАН), занимался следствиями современных теорий элементарных частиц, работая вместе с профессором Давидом Абрамовичем Киржницем.

В 1972 г. Киржниц и Линде пришли к выводу, что в ранней Вселенной происходили своеобразные фазовые переходы, когда различия между разными типами взаимодействий вдруг исчезали: сильные и электрослабые взаимодействия сливались в одну единую силу. (Единая теория слабого и электромагнитного взаимодействий, осуществляемых кварками и лептонами посредством обмена безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие), создана в конце 1960-х гг. Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом.) В дальнейшем Линде сосредоточился на изучении процессов на еще более ранних стадиях развития Вселенной, в первые 10–30 с после ее рождения. Раньше казалось маловероятным, что до нас может дойти эхо событий, происходивших в первые миллисекунды рождения Вселенной. Однако в последние годы современные методы астрономических наблюдений позволили заглянуть в далекое прошлое.

Проблемы космологии

Рассматривая теорию Большого взрыва, исследователи сталкивались с проблемами, ранее воспринимавшимися как метафизические. Однако вопросы неизменно возникали и требовали ответов.

Что было тогда, когда ничего не было? Если Вселенная родилась из сингулярности, значит, когда-то ее не существовало. В «Теоретической физике» Ландау и Лифшица сказано, что решение уравнений Эйнштейна нельзя продолжить в область отрицательного времени, и потому в рамках общей теории относительности вопрос «Что было до рождения Вселенной?» не имеет смысла. Однако вопрос этот продолжает волновать всех нас.

Пересекаются ли параллельные линии? В школе нам говорили, что нет. Однако когда речь заходит о космологии, ответ не столь однозначен. Например, в замкнутой Вселенной, похожей на поверхность сферы, линии, которые были параллельными на экваторе, пересекаются на северном и южном полюсах. Так прав ли Евклид? Почему Вселенная кажется плоской? Была ли она такой с самого начала? Чтобы ответить на эти вопросы, необходимо установить, что представляла собой Вселенная на самом раннем этапе развития.

Почему Вселенная однородна? На самом деле это не совсем так. Существуют галактики, звезды и иные неоднородности. Если посмотреть на ту часть Вселенной, которая находится в пределах видимости современных телескопов, и проанализировать среднюю плотность распределения вещества в космических масштабах, окажется, что она одинакова во всех направлениях с точностью до 10–5. Почему же Вселенная однородна? Почему в разных частях Вселенной действуют одни и те же законы физики? Почему Вселенная такая большая? Откуда взялась энергия нужная для ее возникновения?

Сомнения возникали всегда, и чем больше ученые узнавали о строении и истории существования нашего мира, тем больше вопросов оставалось без ответов. Однако люди старались о них не думать, воспринимая большую однородную Вселенную и непересекающиеся параллельные линии как данность, не подлежащую обсуждению. Последней каплей, заставившей физиков пересмотреть отношение к теории ранней Вселенной, явилась проблема реликтовых монополей.

Существование магнитных монополей было предложено в 1931 г. английским физиком-теоретиком Полем Дираком. Если такие частицы действительно существует, то их магнитный заряд должен быть кратен некоторой заданной величине, которая, в свою очередь, определяется фундаментальной величиной электрического заряда. Почти на полвека эта тема была практически забыта, но в 1975 г. было сделано сенсационное заявление о том, что магнитный монополь обнаружен в космических лучах. Информация не подтвердилась, но сообщение вновь пробудило интерес к проблеме и способствовало разработке новой концепции.

Согласно новому классу теорий элементарных частиц, возникшему в 70-е гг., монополи могли появиться в ранней Вселенной в результате фазовых переходов предсказанных Киржницем и Линде. Масса каждого монополя в миллион миллиардов раз больше массы протона. В 1978–1979 гг. Зельдович, Хлопов и Прескилл обнаружили, что таких монополей рождалось довольно много, так что сейчас на каждый протон приходилось бы по монополю, а значит, Вселенная была бы очень тяжелой и должна была быстро сколлапсировать под своим собственным весом. Тот факт, что мы до сих пор существуем, опровергает такую возможность.

Пересмотр теории ранней Вселенной

Ответ на большую часть перечисленных вопросов удалось получить только после возникновения инфляционной теории.

Инфляционная теория имеет долгую историю. Первую теория такого типа предложил в 1979 году член-корреспондент РАН Алексей Александрович Старобинский. Его теория была довольно сложной. В отличие от последующих работ, она не пытались объяснить, почему Вселенная большая, плоская, однородная, изотропная. Тем не менее, она имела многие важные черты инфляционной космологии.

В 1980 г. сотрудник Массачусетского технологического института Алан Гус (Alan Guth) в статье «Раздувающаяся Вселенная: возможное решение проблемы горизонта и плоскостности» изложил интересный сценарий раздувающейся Вселенной. Основным его отличием от традиционной теории Большого взрыва стало описание рождения мироздания в период с 10–35 до 10–32 с. Гус предположил, что в это время Вселенная была в состоянии так называемого «ложного» вакуума, при котором ее плотность энергии была исключительно велика. Поэтому расширение происходило быстрее, чем по теории Большого взрыва. Эта стадия экспоненциально быстрого расширения и была названа инфляцией (раздуванием) Вселенной. Затем ложный вакуум распадался, и его энергия переходила в энергию обычной материи.

Теория Гуса была основана на теории фазовых переходов в ранней Вселенной развитой Киржницем и Линде. В отличие от Старобинского, Гус ставил своей целью с помощью одного простого принципа объяснить, почему Вселенная большая, плоская, однородная, изотропная, а также почему монополей нет. Стадия инфляции могла бы решить эти проблемы.

К сожалению, после распада ложного вакуума в модели Гуса Вселенная оказывалась либо очень неоднородной, либо пустой. Дело в том, что распад ложного вакуума, как кипение воды в чайнике, происходил за счет образования пузырьков новой фазы. Для того чтобы выделяемая при этом энергия перешла в тепловую энергию Вселенной, необходимо было столкновение стенок огромных пузырей, а это должно было бы приводить к нарушению однородности и изотропности Вселенной после инфляции, что противоречит поставленной задаче.

Несмотря на то, что модель Гуса не работала, она стимулировала разработку новых сценариев раздувающейся Вселенной.

Новая инфляционная теория

В середине 1981 г. Линде предложил первый вариант нового сценария раздувающейся Вселенной, основывающийся на более детальном анализе фазовых переходов в модели Великого объединения. Он пришел к выводу, что в некоторых теориях экспоненциальное расширение не заканчивается сразу после образования пузырьков, так что инфляция может идти не только до фазового перехода с образованием пузырьков, но и после, уже внутри них. В рамках этого сценария наблюдаемая часть Вселенной считается содержащейся внутри одного пузырька.

В новом сценарии Линде показал, что разогрев после раздувания происходит за счет рождения частиц во время колебаний скалярного поля (см. ниже). Таким образом, соударения стенок пузырьков, порождающих неоднородности, стали не нужны, и тем самым была решена проблема крупномасштабной однородности и изотропности Вселенной.

Новый сценарий содержал два ключевых момента: во-первых, свойства физического состояния внутри пузырьков должен меняться медленно, чтобы обеспечивалось раздувание внутри пузырька; во-вторых, на более поздних стадиях должны происходить процессы, обеспечивающие разогрев Вселенной после фазового перехода. Спустя год исследователь пересмотрел свой подход, предложенный в новой инфляционной теории, и пришел к выводу, что фазовые переходы вообще не нужны, равно как переохлаждение и ложный вакуум, с которого начинал Алан Гус. Это был эмоциональный шок, т. к. предстояло отказаться от считавшихся истинными представлений о горячей Вселенной, фазовых переходах и переохлаждении. Необходимо было найти новый способ решения проблемы. Тогда была выдвинута теория хаотической инфляции.

Хаотическая инфляция

Идея, лежащая в основе теории хаотической инфляции Линде, очень проста, но для того чтобы ее объяснить, нужно ввести понятие скалярного поля. Существуют направленные поля – электромагнитное, электрическое, магнитное, гравитационное, но может быть по крайней мере еще одно – скалярное, которое никуда не направлено, а представляет собой просто функцию координат.

Самым близким (хотя и не точным) аналогом скалярного поля является электростатический потенциал. Напряжение в электрических сетях США – 110 В, а в России – 220 В. Если бы человек одной рукой держался за американский провод, а другой – за российский, его бы убила разница потенциалов. Если бы напряжение везде было одинаковым, не было бы разницы потенциалов и ток бы не тек. Так вот в постоянном скалярном поле разницы потенциалов нет. Поэтому мы не можем увидеть постоянное скалярное поле: оно выглядит как вакуум, который в некоторых случаях может обладать большой плотностью энергии.

Считается, что без полей такого типа очень трудно создать реалистичную теорию элементарных частиц. В последние годы были обнаружены практически все частицы, предсказанные теорией электрослабых взаимодействий, кроме скалярной. Поиск таких частиц – одна из основных целей огромного ускорителя, строящегося сейчас в ЦЕРНе, Шейцария.

Скалярное поле присутствовало практически во всех инфляционных сценариях. Гус предложил использовать потенциал с несколькими глубокими минимумами. Новой инфляционной теории Линде требовался потенциал с почти плоской вершиной, но позже, в сценарии хаотической инфляции, оказалось, что достаточно взять обычную параболу, и все срабатывает.

Рассмотрим простейшее скалярное поле, плотность потенциальной энергии которого пропорциональна квадрату его величины, подобно тому как энергия маятника пропорциональна квадрату его отклонения от положения равновесия:



Маленькое поле ничего не будет знать про Вселенную и станет колебаться вблизи своего минимума. Однако если поле будет достаточно велико, то оно будет скатываться вниз очень медленно, разгоняя Вселенную за счет своей энергии. В свою очередь, скорость движения Вселенной (а не какие-либо частицы) будет затормаживать падение скалярного поля.

Таким образом, большое скалярное поле приводит к большой скорости расширения Вселенной. Большая скорость расширения Вселенной мешает полю спадать и тем самым не дает плотности потенциальной энергии уменьшаться. А большая плотность энергии продолжает разгонять Вселенную со все большей скоростью. Этот самоподдерживающийся режим и приводит к инфляции, экспоненциально быстрому раздуванию Вселенной.

Чтобы объяснить этот удивительный эффект, необходимо совместно решить уравнение Эйнштейна для масштабного фактора Вселенной:



и уравнение движения для скалярного поля:



Здесь Н – так называемая постоянная Хаббла, пропорциональная плотности энергии скалярного поля массы m (эта постоянная на самом деле зависит от времени); G – гравитационная постоянная.

Исследователи уже рассматривали, как скалярное поле будет вести себя в окрестностях черной дыры и во время коллапса Вселенной. Но почему-то режим экспоненциального расширения не был найден. А следовало лишь написать полное уравнение для скалярного поля, которое в стандартном варианте (то есть без учета расширения Вселенной) выглядело как уравнение для маятника:



Но вмешался некоторый дополнительный член – сила трения, который был связан с геометрией; его сначала никто не учитывал. Он представляет собой произведение постоянной Хаббла на скорость движения поля:



Когда постоянная Хаббла была большой, трение тоже было велико, и скалярное поле уменьшалось очень медленно. Поэтому и постоянная Хаббла, являющаяся функцией скалярного поля, долгое время почти не менялась. Решение уравнения Эйнштейна с медленно меняющейся постоянной Хаббла описывает экспоненциально быстро расширяющуюся Вселенную.



Эта стадия экспоненциально быстрого расширения Вселенной и называется инфляцией.

Чем отличается этот режим от обычного расширения Вселенной заполненной обычным веществом? Предположим, что Вселенная, заполненная пылью, расширилась в 2 раза. Тогда ее объем вырос в 8 раз. Значит, в 1 см3 стало в 8 раз меньше пыли. Если решить уравнение Эйнштейна для такой Вселенной, то окажется, что после Большого взрыва плотность вещества быстро падала, а скорость расширения Вселенной быстро уменьшалась.

То же самое было бы и со скалярным полем. Но пока поле оставалось очень большим, оно само себя поддерживало, как барон Мюнхгаузен, вытаскивающий себя из болота за косичку. Это было возможным за счет силы трения, которая была существенна при больших значениях поля. В соответствии с теориями нового типа Вселенная быстро расширялась, а поле почти не менялось; соответственно, не менялась и плотность энергии. Значит, расширение шло экспоненциально.

Постепенно поле уменьшилось, постоянная Хаббла тоже уменьшилась, трение стало маленьким, и поле начало колебаться, порождая элементарные частицы. Эти частицы сталкивались, обменивались энергией и постепенно пришли в состояние термодинамического равновесия. В результате Вселенная стала горячей.

Раньше считалось, что Вселенная была горячей с самого начала. К этому выводу приходили, изучая микроволновое излучение, которое интерпретировали как следствие Большого взрыва и последующего остывания. Затем стали думать, что сначала Вселенная была горячей, потом произошла инфляция, и после нее Вселенная вновь стала горячей. Однако, в теории хаотической инфляции первая горячая стадия оказалась ненужной. Но зачем нам понадобилась стадия инфляции, если в конце этой стадии Вселенная все равно стала горячей, как и в старой теории Большого взрыва?

Экспоненциальное расширение

Есть три простейшие модели Вселенной: плоская, открытая и замкнутая. Плоская Вселенная похожа на поверхность ровного стола; параллельные линии в такой Вселенной всегда остаются параллельными. Открытая Вселенная похожа на поверхность гиперболоида, а замкнутая Вселенная похожа на поверхность шара. Параллельные линии в такой Вселенной пересекаются на ее северном и южном полюсах.

Предположим, что мы живем в замкнутой Вселенной, которая сначала была маленькой как шарик. По теории Большого взрыва, она вырастала до порядочных размеров, но все равно оставалась относительно небольшой. А согласно инфляционной теории, крошечный шарик в результате экспоненциального взрыва за очень короткое время стал огромным. Находясь на нем, наблюдатель увидел бы плоскую поверхность.

Представим себе Гималаи, где существует множество различных уступов, расщелин, пропастей, ложбин, каменных глыб, т. е. неоднородностей. Но вдруг кто-то или что-то совершенно невероятным образом увеличил горы до гигантских размеров, или мы уменьшились, как Алиса в Стране чудес. Тогда, находясь на вершине Эвереста, мы увидим, что она совершенно плоская – ее как бы растянули, и неоднородности перестали иметь какое-либо значение. Горы остались, но для того чтобы подняться хотя бы на один метр, нужно уйти невероятно далеко. Таким образом, может быть решена проблема однородности. Этим же объясняется, почему Вселенная плоская, почему параллельные линии не пересекаются и почему не существуют монополи. Параллельные линии могут пересекаться, и монополи могут существовать, но только так далеко от нас, что мы не можем этого увидеть.

Возникновение галактик

Маленькая Вселенная стала колоссальной, и все стало однородным. Но как же быть с галактиками? Оказалось, что в ходе экспоненциального расширения Вселенной маленькие квантовые флуктуации, существующие всегда, даже в пустом пространстве, из-за квантово-механического принципа неопределенности, растягивались до колоссальных размеров и превращались в галактики. Согласно инфляционной теории, галактики – это результат усиления квантовых флуктуаций, т. е. усиленный и замерзший квантовый шум.

Впервые на эту поразительную возможность указали сотрудники ФИАН Вячеслав Федорович Муханов и Геннадий Васильевич Чибисов в работе, основанной на модели, предложенной в 1979 г. Старобинским. Вскоре после этого, аналогичный механизм был обнаружен в новом инфляционном сценарии и в теории хаотической инфляции.

Небо в крапинку

Квантовые флуктуации приводили не только к рождению галактик, но и к возникновению анизотропии реликтового излучения с температурой примерно 2,7 К, приходящего к нам из дальних областей Вселенной.

Исследовать реликтовое излучение ученым помогают современные искусственные спутники Земли. Самые ценные данные удалось получить с помощью космического зонда WMAP (Wilkinson Microwave Anisotropy Probe), названного так в честь астрофизика Дэвида Уилкинсона (David Wilkinson). Разрешающая способность его аппаратуры в 30 раз больше, чем у его предшественника – космического аппарата COBE.

Ранее считалось, что температура неба всюду равна 2,7 К, однако WMAP смог измерить ее с точностью до 10–5 К с высокой угловой разрешающей способностью. Согласно данным, полученным за первые 3 года наблюдений, небо оказалось неоднородным: где-то горячее, а где-то холоднее. Простейшие модели инфляционной теории предсказали рябь на небе. Но пока телескопы не зафиксировали его пятнистость, наблюдалось только трехградусное излучение, служившее мощнейшим подтверждением теории горячей Вселенной. Теперь же выяснилось, что теории горячей Вселенной не хватает.

Вечная и бесконечная

Посмотрим еще раз на рисунок, показывающий простейший потенциал скалярного поля (см. выше). В области, где скалярное поле мало, оно осциллирует, и Вселенная не расширяется экспоненциально. В области, где поле достаточно велико, оно медленно спадает, и на нем возникают маленькие флуктуации. В это время происходит экспоненциальное расширение и идет процесс инфляции. Если бы скалярное поле было еще больше (на графике отмечено голубым цветом), то за счет огромного трения оно бы почти не уменьшалось, квантовые флуктуации были бы огромны, и Вселенная могла стать фрактальной.

Представим, что Вселенная быстро расширяется, а в каком-то месте скалярное поле, вместо того чтобы катиться к минимуму энергии, из-за квантовых флуктуаций подскакивает вверх (см. выше). В том месте, где поле подскочило, Вселенная расширяется экспоненциально быстрее. Низкорасположенное поле вряд ли подскочит, но чем выше оно будет находиться, тем больше вероятность такого развития событий, а значит, и экспоненциально большего объема новой области. В каждой из таких ровных областей поле тоже может подскочить наверх, что приводит к созданию новых экспоненциально растущих частей Вселенной. В результате этого, вместо того чтобы быть похожей на один огромный растущий шар, наш мир становится похожим на вечно растущее дерево, состоящее из многих таких шаров.

Инфляционная теория дает нам единственное известное сейчас объяснение однородности наблюдаемой части Вселенной. Парадоксальным образом эта же теория предсказывает, что в предельно больших масштабах наша Вселенная абсолютно неоднородна и выглядит как огромный фрактал.

Свойства пространства-времени и законы взаимодействия элементарных частиц друг с другом в разных областях Вселенной могут быть различны, равно как и размерности пространства, и типы вакуума.

Этот факт заслуживает более детального объяснения. Согласно простейшей теории с одним минимумом потенциальной энергии, скалярное поле катится вниз к этому минимуму. Однако более реалистические версии допускают множество минимумов с разной физикой, что напоминает воду, которая может находиться в разных состояниях: жидком, газообразном и твердом. Разные части Вселенной также могут пребывать в разных фазовых состояниях; это возможно в инфляционной теории даже без учета квантовых флуктуаций.

Следующим шагом, основанным на изучении квантовых флуктуаций, является теория самовосстанавливающейся Вселенной. В этой теории учитывается процесс постоянного воссоздания раздувающихся областей и квантовые скачки из одного вакуумного состояния в другое, перебирающие разные возможности и размерности.

Так Вселенная становится вечной, бесконечной и многообразной. Вся Вселенная никогда не сколлапсирует. Однако это не означает, что отсутствуют сингулярности. Напротив, значительная часть физического объема Вселенной все время находится в состоянии, близком к сингулярному. Но так как различные объемы проходят его в разное время, единого конца пространства-времени, после которого все области исчезают, не существует. И тогда вопрос о множественности миров во времени и в пространстве приобретает совершенно другое звучание: Вселенная может самовоспроизводиться бесконечно во всех своих возможных состояниях.

Это утверждение, в основе которого лежали работы Линде сделанные им в 1986 году, прибрело новое звучание несколько лет назад, когда специалисты по теории струн (лидирующий кандидат на роль теории всех фундаментальных взаимодействий) пришли к выводу что в этой теории возможно 10100–101000 различных вакуумных состояний. Эти состояния отличаются за счет необычайного разнообразия возможного устройства мира на сверхмалых расстояниях.

В совокупности с теорией самовосстанавливающейся инфляционной Вселенной, это означает, что Вселенная во время инфляции разбивается на бесконечно много частей с невероятно большим количеством разных свойств. Космологи называют этот сценарий теорией вечной инфляционной мультивселенной (multiverse), а специалисты по теории струн называют это струнным ландшафтом.

25 лет назад инфляционная космология выглядела как нечто промежуточное между физической теорией и научной фантастикой. За прошедшее время многие предсказания этой теории были проверены, и она постепенно приобрела черты стандартной космологической парадигмы. Но успокаиваться еще рано. Эта теория и сейчас продолжает быстро развиваться и меняться. Основная проблема – разработка моделей инфляционной космологии основанных на реалистических вариантах теории элементарных частиц и теории струн. Этот вопрос может быть темой отдельного доклада.


КВАНТОВАЯ ФИЗИКА

ГЛАВА 7


Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.

Квантовая гипотеза Планка e = nh,

где e – энергия излучения, n – частота излучения, h – постоянная Планка.

Это предположение показывало, что законы классической физики неприменимы к микромиру.

В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.


Квантовая механика – раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.


Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название – матричная механика. Теория объясняла, как происходят квантовые скачки.


Квантовый скачок – переход квантовой системы (в частности атома) с одного энергетического уровня на другой.


Подход Гейзенберга включал два компонента:


Полный набор частот, на которых излучает атом вследствие квантового скачка;

Вероятности, в соответствии с которыми происходят скачки;

Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.

Если вы любите загадочные словосочетания, то на первом месте среди них наверняка стоит «квантовая физика». Для многих это что-то сродни магии, которая появляется из ниоткуда и уходит в никуда. Вот только на деле все сложнее, но мы постараемся объяснить это простым языком.

Квантовая физика – часть физики, изучающая поведение субатомных частиц на мельчайших расстояниях, где проявляются загадочные квантовые эффекты и перестает работать общая теория относительности. Квантовая физика, несмотря на свою сложность и порой нелогичность, все же считается самым точным и проверенным звеном науки.

Множество предсказанных квантовой механикой явлений были обнаружены экспериментально и взяты на вооружение: квантовое туннелирование, квантовая запутанность, принцип неопределенности и многое другое «Квантовая физика настолько сложная, что ее никто не понимает», – писал нобелевский лауреат Ричард Фейнман. И это не удивительно, так как даже Альберт Эйнштейн относился к ней настороженно, называя феномен квантовой запутанности «сверхъестественным» и «жутким». В вероятностной природе квантовой механики сомневался ирландский физик-теоретик Джон Белл и другие основоположники этой теории. Но несмотря на споры и разногласия, таинственный мир элементарных частиц стал драйвером современной цивилизации: интернет, компьютеры, смартфоны, лазеры, оптоволоконные сети и атомная энергетика существуют благодаря науке о квантах. Только представьте к чему могут привести дальнейшие открытия, которых с каждым годом становится все больше. Так, в 2022 году лауреатами Нобелевской премии по физике стали стразу трое ученых, которые независимо друг от друга проводили эксперименты с запутанными фотонами, сенсорными технологиями и безопасной передаче информации. К слову, не обошлось без квантовой телепортации, но обо всем по-порядку.

В 2022 году лауреатами Нобелевской премии по физике стали Ален Аспе, Джон Клаузер и Антон Цайлингер. Трое физиков удостоились награды за эксперименты по квантовой запутанности, в основе которых лежат труды таких выдающихся ученых как Нильс Бор, Альберт Эйнштейн и Джон Белл – все они хотели понять природу странного поведения элементарных частиц, способных находиться далеко друг от друга сохраняя между собой связь.

Как отмечают представители Шведской королевской академии наук, в будущем работы Аспе, Клаузера и Цайлингера сыграют важную роль в области квантовых вычислений и безопасной передачи данных, открывая новую главу в истории квантовой механики. Интересно, что исследователи работали независимо друг от друга пытаясь объяснить «жуткий» феномен запутанных элементарных частиц.


ТЕОРИЯ ЗАМЕДЛЕНИЯ ВРЕМЕНИ

ГЛАВА 8


Прочитал любопытную и забавную «теорию» замедления времени в повседневной жизни. Её автор провел аналогию с известным «парадоксом близнецов» Специальной теории относительности (СТО).

Это не только забавно, но и поучительно. Читайте и делайте выводы сами…

Время, похоже, летит, когда мы говорим с привлекательными для нас людьми или когда мы делаем то, что нам нравится. И оно замедляется, когда мы делаем что-то, что нам кажется скучным.

Возможно, это нечто большее, чем кажется на первый взгляд.

Оказывается, наш повседневный опыт времени согласуется с исследованиями Эйнштейна и его Теорией Относительности.

В частности, он согласуется с явлением, называемым Замедление времени (Time Dilation).

Time Dilation

Если вы видели фильм «Интерстeллар» (Interstellar), там есть эпизод, в котором три астронавта находятся на большом космическом корабле. Двое из них садятся на меньший десантный корабль, чтобы спуститься на планету с очень сильным гравитационным полем.

Они остаются на поверхности этой планеты в течение всего нескольких минут. В течение этого времени они сталкиваются с огромными волнами и, едва уцелев, возвращаются на своем десантном аппарате на большой космический корабль, который ждет их на орбите. Вернувшись, они обнаруживают, что третий астронавт ждал их уже много лет.

Все астронавты находились в обычном течении времени, но в разных условиях. Астронавт, который подвергался меньшей гравитационной силе в более крупном космическом корабле, прожил несколько лет, а те, кто посетил гравитационную планету – несколько минут.

Умопомрачительно! Не так ли?

Почему это происходит?

Для людей, которые подвержены различной силе гравитации, время течет с разной скоростью, хотя, по их собственному опыту, время, похоже, проходит с нормальной скоростью.

Но не только гравитация может вызвать замедление времени. Скорость также может сделать это.

Например, если один из близнецов останется на Земле, а другой какое-то время будет путешествовать на космическом корабле, движущемся с большой скоростью, то по возвращению обнаружится, что оставшийся на Земле брат-близнец прожил больше времени, чем космический путешественник.

Это называется «парадоксом близнецов».

Так что же такое замедление времени?

Согласно теории относительности Эйнштейна, замедление времени (Time Dilation) происходит, если вы попадаете в условия большой гравитации или движетесь на большой скорости, то по возвращению на Землю вы будете относительно моложе, чем тот человек, который там остался.


Когда британский астронавт Тим Пик (Tim Peake) отправился на Международную космическую станцию(МКС), на которой находился в течение 6 месяцев, то он испытал замедление времени следующими способами:

Он был в состоянии меньшей гравитации (сила тяжести сильнее, чем ближе к центру Земли), поэтому время для него ускорялось по отношению к тем, кто остался на Земле.

Он двигался очень быстро, так как он вращался вокруг Земли, поэтому время для него замедлялось по отношению к тем, кто остался на Земле.

При суммировании, замедление времени из-за скорости движения по орбите орбиты немного перевесило ускорение времени из-за изменения силы тяжести и поэтому он вернулся относительно моложе людей, оставшихся на Земле.

Какое это имеет отношение к нашему повседневному опыту времени?

Ну, это явление замедления времени похоже на то, как мы переживаем время в повседневной жизни.

Когда мы движемся быстро (с работой или с идеями) или когда мы подвержены притяжению кого-то или чего-то, привлекательного для нас, мы испытываем время относительно медленнее, чем те, кто ничего не делает на Земле.

Неужели?

Чтобы объяснить, что имеется в виду, мы должны выделить конкретные часы, с помощью которых мы измеряем время.

Во-первых, есть часы Земли. Это любые часы на поверхности планеты Земля. Например, часы Биг Бена в Лондоне.

В приведенном выше примере с Тимом Пиком мы сравнивали время на земных часах с временем, измеренным часами на Международной космической станции.

Но теперь предположим, что в голове каждого человека есть воображаемые «головные часы».

Когда вы чувствуете, что время пролетает или медленно тянется, то вы испытываете несоответствие между головными часами и часами Земли.

Время может лететь или тянуться.

Предположим, вы проводите несколько часов, разговаривая с кем-то привлекательным для вас. По мере того, как часы Биг-Бена тикают, ваши головные часы идут сравнительно медленнее, точно так же, как часы возле черной дыры (где большая гравитация) будут идти относительно медленнее, чем Биг-Бен.

Но в вашей собственной голове вы испытываете время, как обычно во время вашего всепоглощающего разговора. Не похоже, что время замедлилось для вас в данный момент.

Но когда вы смотрите вверх на часы Биг Бена, и ваши головные часы чувствуют, что, скажем, прошло 30 минут, то вы вдруг замечаете, что по земному времени прошло, скажем, 2 часа. Время Земли пролетело, пока вы разговаривали с приятным для вас человеком.

И то же самое верно, когда вы полностью поглощены работой или поддались «гравитационному» притяжению сна. Время Земли, кажется, проходит относительно быстро.

Ну и что?

Ну, с одной стороны, можно утверждать, что, делая вещи, которые привлекают нас, и двигаясь быстрее, жизнь пролетит мимо.

И, в долгосрочной перспективе, это может означать, что мы достигнем своего конца, казалось бы, быстрее, потому что мы живем только в течение определенного количества «земных часов».

Но что, если люди на самом деле должны жить в течение определенного количества «головных часов», а не земных часов?

Предположим, вы собираетесь жить в течение 100 лет по вашим «головным часам». Проводя время вместе с привлекательными(притягательными) людьми, двигаясь быстрее, отдыхая во сне и поглощая себя работой, которая вас интересует, вы будете жить относительно больше лет, измеряемых часами Земли, может быть, 150 лет или около того!


Если вы двигаетесь быстро и к привлекательным вещам, вы можете прожить больше земных часов

Возможно, Тим Пик вернулся с Международной космической станции даже моложе, чем мы думаем, потому что он, вероятно, отлично провел там время.

Если вы делаете следующие вещи…

Проводите больше времени с привлекательными людьми,

Тратите больше времени на то, что вас интересует,

Двигаетесь быстрее (но не спешите!),

Спите больше,

Делаете все остальное, что заставляет время на Земле пролетать быстро,

…тогда вы будете жить дольше, когда вы измерите длину своей жизни по часам Земли (что мы все и делаем).


Оглавление

  • Вглубь чёрной дыры
  • Атомы пространства-времени
  • Запутанные сети
  • Как работает расширение вселенной?
  • Почему отдаленные галактики удаляются быстрее?
  • Куда расширяется вселенная?
  • Почему случаются столкновения галактик?
  • Так что, так и будет расширяться бесконечно?
  • Какой формы черная дыра?
  • Проблемы космологии
  • Пересмотр теории ранней Вселенной
  • Новая инфляционная теория
  • Хаотическая инфляция
  • Экспоненциальное расширение
  • Возникновение галактик
  • Небо в крапинку
  • Вечная и бесконечная
  • Квантовая гипотеза Планка e = nh,
  • Time Dilation
  • Почему это происходит?
  • Так что же такое замедление времени?
  • Какое это имеет отношение к нашему повседневному опыту времени?
  • Неужели?
  • Время может лететь или тянуться.
  • Ну и что?